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Abstract—Recent technology advancements allow for the
integration of large memory structures on-die or as a die-
stacked DRAM. Such structures provide higher bandwidth
and faster access time than off-chip memory. Prior work has
investigated using the large integrated memory as a cache,
or using it as part of a heterogeneous memory system under
management of the OS. Using this memory as a cache would
waste a large fraction of total memory space, especially for the
systems where stacked memory could be as large as off-chip
memory. An OS-managed heterogeneous memory system, on
the other hand, requires costly usage-monitoring hardware to
migrate frequently-used pages, and is often unable to capture
pages that are highly utilized for short periods of time.

This paper proposes a practical, low-cost architectural
solution to efficiently enable using large fast memory as Part-
of-Memory (PoM) seamlessly, without the involvement of the
OS. Our PoM architecture effectively manages two different
types of memory (slow and fast) combined to create a single
physical address space. To achieve this, PoM implements the
ability to dynamically remap regions of memory based on
their access patterns and expected performance benefits. Our
proposed PoM architecture improves performance by 18.4%
over static mapping and by 10.5% over an ideal OS-based
dynamic remapping policy.

Keywords-Stacked DRAM, Heterogeneous Memory, Hard-
ware Management, Die-Stacking

I. INTRODUCTION

With the continuing advancements in process technology,
there is a clear trend towards more integration in designing
future systems. In the memory subsystem, with smaller form
factors and the quest for lower power, a part of memory
has also started being integrated on-die or as a die-stacked
DRAM. Embedded DRAM (eDRAM) has already been used
in some commercial systems [1,2], and die-stacked memory
is also gaining momentum [3, 4]. This trend is expected to
scale by integrating larger memory capacities across market
segments from mobile to server.

Integrated memory structures have often been exploited in
prior work as hardware-managed last-level caches [5–10].
In such a cache design, allocating a cache line involves
making a local (i.e., redundant) copy of the data stored in
main memory. In this case, cache capacity is invisible to
system memory, but applications can experience reasonable
performance benefits without modifications to the operating
systems (OS) or running software. With conventional cache
size of a few megabytes per core (or tens of MBs per core
as in today’s eDRAMs), the opportunity costs of losing

overall memory capacity to cache copies are insignificant.
However, the integrated memory structures driven by die-
stacking technology could provide hundreds of megabytes
of memory capacity per core. Micron already offers 2GB
Hybrid Memory Cube (HMC) samples [11]. By integrating
multiple stacks on a 2.5D interposer, it is also plausible to
integrate even tens of gigabytes of memory on package.
For some market segments, depending on its deployment
scenarios, making the integrated memory invisible to overall
system memory (i.e., used as a cache) could lead to a non-
negligible loss of a performance opportunity.1

An alternative to using on-die memory as a cache is to use
it as part of an OS-managed heterogeneous memory system,
as in non-uniform memory architectures (NUMA) [13–15].
NUMA systems were quite popular in designing large-scale
high-performance computers even without on-die memory
integration. NUMA allows processors fast access to data
in memory that is closer in proximity to the processor.
With careful OS-managed page migration and/or replication
policies, processors could get most of the data they need
in near memory. However, performing migration under OS
control implies a high latency overhead since it could only
happen through OS code. Furthermore, OS-managed migra-
tion could only happen at coarse-grained intervals since the
OS routines cannot be called frequently. This could miss
many opportunities to improve performance by migrating
pages that are highly utilized for short periods of time.

In this paper, we propose architectural mechanisms to
efficiently use large, fast, on-die memory structures as part
of memory (PoM) seamlessly through the hardware. Such
a design employing effective management would achieve
the performance benefit of on-die memory caches without
sacrificing a large fraction of total memory capacity to serve
as a cache. As we discuss in Section III, the main challenge
for the hardware-based management is to keep the hardware
cost of meta-data and other structures in check. Our PoM
architecture provides unique designs and optimizations that
become very effective in our problem space, which we
cover in Section IV. In contrast to OS-managed policies,
our approach is transparent to software and achieves higher
performance due to its ability to adapt and remap data at a
fine granularity.

1Some industry architects consider providing the option to use gigabytes
of on-die memory as part of system-visible memory in addition to a large
cache configuration [12].



This paper makes the following contributions:
• We propose a Part-of-Memory (PoM) architecture that

efficiently manages a heterogeneous memory system by
remapping data to fast memory without OS intervention.
To our knowledge, this is the first work that provides a
practical design of hardware-based management.

• We propose two-level indirection with a remapping cache
to alleviate the additional latency for indirection and on-
die storage overheads required for hardware-based hetero-
geneous memory management.

• We propose a competing counter-based page activity
tracking and replacement mechanism that is suitable to
implement for the PoM architecture. Our mechanism
provides a responsive remapping decision while being
area-efficient, which is necessary for hardware-based PoM
management.

Our results show that when these techniques are used in
concert they achieve an 18.4% performance improvement
over static mapping, and a 10.5% improvement over an ideal
OS-based dynamic remapping policy.

II. BACKGROUND AND MOTIVATION

A. Heterogeneous Memory System

We define a heterogeneous memory system as a memory
subsystem in which some portions of memory provide dif-
ferent performance/power characteristics than other portions
of memory in the same node. We project that many of
future memory systems will exploit such heterogeneity to
meet a variety of requirements imposed on today’s memory
architectures. A good example is a memory subsystem
composed of stacked DRAM and off-chip memory [6, 16],
where DRAM stacked on the processor provides both higher
bandwidth and faster access time as compared to the off-chip
memory. Another example is the recently proposed tiered-
latency DRAM architecture, where a DRAM array is broken
up into near and far segments that have fast and slow access
times, respectively [17]. Such heterogeneous memory is
often equipped with a few gigabytes of fast memory, so a key
to achieving more system performance is how to make an
efficient use of such large fast memory. In Sections II and III,
we discuss the opportunities and challenges of architecting
such heterogeneous memory systems.

B. Architecting Fast Memory as Part-of-Memory (PoM)

Heterogeneous memory can be managed in a number of
ways. The most common approach is to manage it as a
cache [5,6]. Generally, in this approach, allocating a block in
the fast memory entails the duplication of the slow memory
block into the fast memory. Although such duplication
results in capacity loss, it makes block allocations simple
and fast. However, in cases where the capacity of the fast
memory is comparable to that of the slow memory, the
capacity lost in duplication may be unacceptable. In these
cases, both fast and slow memory may be combined into a
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Figure 1. A high-level view of OS-based PoM management.

single flat address space. We refer to this as a PoM (Part-
of-Memory) architecture. The simplest PoM architecture
resembles typical homogeneous memory architectures, with
a portion of the address space mapped statically to the fast
memory whereas the remainder mapped to the slow memory.
To maximize the performance benefits of fast memory, the
operating system (OS) could allocate heavily used pages to
the portion of the physical address space mapped to the fast
memory.

C. Dynamic PoM Management
The key advantage of the PoM architecture is the ability to

increase overall memory capacity by avoiding duplication.
However, its performance may suffer relative to a simple
cache. The PoM architecture is at a disadvantage for two
reasons. First, the performance benefits of the fast memory
will depend on the operating system’s ability to identify
frequently used portions of memory. Second, even if the
most frequently used portions of memory can be success-
fully identified, a replacement policy that relies on frequency
of use may underperform the typical cache recency based
replacement algorithm [18].

Figure 1 shows an overview of the OS-based PoM
management. At a high-level, such dynamic management
consists of two phases of profiling and execution. At every
interval, we first need to collect information that helps deter-
mine the pages to be mapped into fast memory during run-
time (Application Run). The operating system generally has
a limited ability to obtain such information; a reference bit in
page tables is mostly the only available information, which
provides a low resolution of a page activity. Thus, richer
hardware support for profiling may be desirable even for the
OS-based PoM management. A typical way of profiling such
as used in [19] has hardware counters associated with every
active page and increments the counter for the corresponding
page on a last-level cache (LLC) miss. The profiled data is
then used to perform page allocations for the next interval
during the execution phase. In OS-based management, the
execution is costly since it involves an OS interrupt/handler
invocation, counter sorting, page table modification, and
TLB flushing in addition to the actual page allocation cost.
As such, the OS-involved execution must be infrequent and
thus often fails to exploit the full benefits of fast memory.

D. Potential of Hardware-Managed PoM Architecture
By managing the PoM architecture without an involve-

ment of the operating system, we can eliminate the overhead
of an OS interrupt/handler invocation (∂) in the execution
phase. More importantly, we do not need to wait for an
OS quantum in order to execute page allocations, so the
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Figure 2. Percentage of LLC misses serviced from fast memory across
different intervals.

execution can happen at any rate. Therefore, the conventional
approach of (long) interval-based profiling and execution
is likely to be a less effective solution in the hardware-
managed PoM architecture. To see how much benefit we
can approximately expect by exploiting recency, we vary
the interval size in a frequency-based dynamic mechanism
similar to that described in Section II-C.

Figure 2 presents the percentage of LLC misses serviced
from fast memory while varying the interval size from 10M
cycles to 10K cycles (see Section V for our methodology).
As the interval size decreases, the service rate from fast
memory significantly increases for many workloads. This
implies that we could miss many opportunities for a perfor-
mance improvement if a tracking/replacement mechanism
in the PoM architecture fails to capture pages that are
highly utilized for short periods of time. The potential of
the hardware-managed PoM architecture could be exploited
only when we effectively deal with the cost of hardware
management, which we describe in the next section.

III. CHALLENGES OF HARDWARE-MANAGED POM

The high-level approach of profiling and execution re-
mains the same in the hardware-managed PoM architecture.
However, the hardware-managed PoM architecture intro-
duces the following new challenges.

A. Hardware-Managed Indirection

Dynamic PoM management performs relocating pages
into the memory space that is different from what OS
originally allocated to, thus the hardware-managed PoM
must take responsibility for maintaining the integrity of the
operating system’s view of memory. There are two ways
this could be achieved. First, PoM could migrate memory
regions at the OS page granularity, update the page tables,
and flush TLBs to reflect the new locations of the migrated
pages. Unfortunately, this method is likely infeasible in
many architectures since it would require the availability of
all the virtual addresses that map to the migrating physical
page in order to look up and modify the corresponding page
table entries. In addition, the OS page granularity could be
too coarse-grained for migration, and updating page tables
and flushing TLBs (∑) still need to be infrequent since
they are expensive to perform, thereby leading to lack of
adaptation to program phase changes. Therefore, using this
method in the hardware-managed PoM is unattractive.

The other approach is to maintain an indirection table that
stores such new mapping information and to remap memory
requests targeting the pages that have been relocated into the
non-original memory space. The remapping table, however,
could be too large to fit in on-die SRAM storage. For
example, 2GB of fast memory managed as 2KB segments2

will require a remapping table consisting of 1M entries at
least to support the cases where all the segments in the fast
memory have been brought in from slow memory. Note,
in this approach, that every memory request that missed
in the LLC must access the remapping table to determine
where to fetch the requested data (i.e., whether to fetch
from the original OS-allocated address or from the hardware-
remapped address). Thus, in addition to the concern of pro-
viding such large storage on-chip, the additional latency of
the indirection layer would be unmanageable with a single,
large remapping table, which is another critical problem.

To overcome the problem of a single, large remapping
table, we propose a PoM architecture with two-level indirec-
tion in which the large remapping table is embedded into fast
memory, while only a small number of remapping entries
are cached into an on-die SRAM structure. Although the
two-level indirection may make the PoM architecture more
feasible in practice, naively designing the remapping table
makes the caching idea less effective. Section IV describes
the remapping table design that is suitable for such caching
yet highly area-efficient.

B. Swapping Overhead
A key distinction between PoM and cache architectures is

the need to swap a segment to bring it to fast memory, rather
than just copy a memory block when allocating it to the
cache. PoM also differs from an exclusive cache hierarchy
since caches are backed up by memory (i.e., a clean block
in any level of an exclusive cache hierarchy is also available
in memory). Conversely, only one instance of each segment
exists in PoM, either in slow or in fast memory.

Swapping a segment differs from allocating a cache block
since the segment allocated to fast memory replaces another
segment that occupied its new location, and the swapped-
out segment needs to be written back to slow memory.
Therefore, every allocation to fast memory requires a write-
back of the evicted data to slow memory. This swapping
overhead could be significant depending on the segment size
and the width of the channel between fast and slow memory.
A small segment size reduces the swapping cost of moving
large blocks between large and slow memory, and provides
more flexibility in the replacement policy. However, a small
segment size such as 64B or 128B (typical in caches) reduces
spatial locality, incurs a much higher storage overhead for
the remapping table, and suffers from a higher access latency
due to the large remapping table size. In Sections IV-C
and IV-D, we explore different designs to balance between
minimizing swap overhead and remapping table size.

2We use the term segment to refer to the management granularity in our
PoM architecture.



C. Memory Activity Tracking and Replacement

Providing efficient memory utilization tracking and swap-
ping mechanisms specifically tailored to the hardware-
managed PoM architecture is another major challenge. If we
simply use the mechanism similar to that in Section II-C, we
need to maintain a counter per active page, so we could need
as many counters as the number of page table entries in the
worst case. In addition, due to the required large interval,
each counter needs to have a large number of bits to correctly
provide the access information at the end of each interval.
For example, with a 4GB total memory with 2KB segments,
we need to track as many as 2M entries; then, assuming
that the size of each entry is 16 bits (in order not to be
saturated during a long interval), the tracking structure itself
requires 4MB storage. Having shorter intervals could help
mitigate the storage overhead a bit by reducing the number
of bits for each counter, but comparing all the counters
for shorter intervals would greatly increase the latency and
power overhead. Furthermore, the storage overhead would
still be bounded to the number of page table entries, which
may be undesirable for scalability.

To make a responsive allocation/de-allocation decision
with a low-cost tracking structure, we propose competing
counter-based tracking and swapping for our PoM architec-
ture in which a single counter is associated with multiple
segments in fast and slow memory. Section IV-F discusses
how we reduce the number of counters as well as the size
of each counter while providing responsiveness.

D. Objective and Requirements

The primary objective of this work is to efficiently enable
the PoM architecture in heterogeneous memory systems. For
this purpose, we need to address the previous challenges.
The hardware-managed indirection needs to be fast and area-
efficient. The swapping cost needs to be optimized. The
memory utilization tracking structure also needs to be small
in area while being designed to provide responsive swap-
ping decisions. In the next section, we describe our PoM
architecture and how it addresses these main challenges.

IV. A PRACTICAL POM ARCHITECTURE

A. Design Overview

In a conventional system, a virtual address is translated to
a physical address, which is then used to access DRAM. In
contrast, our system must provide the ability to remap phys-
ical addresses in order to support the transparent swapping
of memory blocks between fast and slow memory. Starting
with the physical address retrieved from the page tables
(Page Table Physical Address, PTPA), we must look up a
remapping table to determine the actual address of the data
in memory (DRAM Physical Address, DPA). Unfortunately,
as discussed in Section III-A, such single-level indirection
with a large remapping table not only has a non-negligible
storage overhead but also incurs a long latency penalty on
every access.
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Figure 3. Overview of the PoM architecture.

Figure 3 presents the overview of our PoM architecture.
One of the key design points in our PoM architecture is
two-level indirection with a remapping cache. Each request
to either slow or fast memory begins by looking for its
remapping information in the segment remapping cache
(SRC). If the segment remapping cache does not contain an
appropriate remapping entry (SRC Miss), then the memory
controller retrieves the remapping entry from the segment
remapping table (SRT) located in fast memory and allocates
it in the SRC. Once the remapping entry has been fetched,
the location of the request (i.e., DPA) is known, and the data
can be fetched.

At a minimum, a remapping entry needs to indicate which
segment is currently located in fast memory. For example,
with 4GB fast/16GB slow memory and 2KB segments,
the maximum number of segments that fast memory can
accommodate is 2M (out of total 10M segments). In this
configuration, the minimum number of remapping entries
required for the SRT would be 2M. With the remapping
table design, when a segment originally allocated to slow
memory by the operating system is brought into one of
the locations in fast memory, the corresponding remapping
entry is modified to have new mapping information, such as
Entry 1’s “Segment N+27” in Figure 3; then, “Segment 1”
is stored in the original OS-allocated location of “Segment
N+27”. Note that, even with the simplest design, the size of
the remapping table is bounded to the number of segments
in the fast memory, so the storage and latency overheads
would still be high to use an on-chip SRAM structure for
the remapping table. We discuss the implementation of the
remapping table in more detail in Section IV-D.

B. Segment-Restricted Remapping

At first blush, it seems that we can simply cache some
of the SRT entries. However, our caching idea may not
be easily realized with the SRT described in the previous
section due to a huge penalty on an SRC miss. On an
SRC miss, we need to access fast memory to retrieve the
remapping information. In the above SRT design, however,
since the remapping information can be located anywhere
(or nowhere) for a miss-invoked memory request, we may
need to search all the SRT entries in the worst case, which
could require thousands of memory requests to fast memory
just for a single SRC miss.

Our solution to restricting the SRC miss penalty within a
single fast memory access is segment-restricted remapping,
as shown in Figure 4. Each entry in the remapping table
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Figure 4. Segment-restricted remapping.

owns some number of segments where the number can be
determined by the total number of segments over the number
of SRT entries in the simplest case. A segment is restricted
to be swapped only for the segments that are owned by
the same entry. This is a similar concept to direct-mapping
in cache designs (but is easily extensible to set-associative
segment-restricted designs). For example, segments A, C and
Y are only allowed to be swapped for the segments owned
by Entry 0, whereas segments B, D and Z are swapped only
for the segments owned by Entry 1. In this segment-restricted
remapping, even if the remapping information for segment
A is not found in the SRC, we can retrieve the remapping
information with a single access to fast memory since it is
only kept in Entry 0. To determine the SRT entry to which
a segment is mapped, we simply use a few bits from the
page table physical address (PTPA), which is good enough
for our evaluated workloads.

C. Segment Allocation/De-allocation: Cache vs. PoM

In this section, we compare a cache allocation and the
swap operation required by our PoM architecture. Through-
out the examples, segments X, Y and Z are all mapped to the
same location in fast memory (as in the segment-restricted
remapping), and non-solid segments in slow memory repre-
sent the segments displaced from their original OS-allocated
addresses.

First, Figure 5 shows a cache line allocation (segment
Z) under two different conditions. In the example on the
left (Clean), segment Z is brought into a local buffer on
the CPU (∂) and simply overwrites segment Y (∑). Before
Z is allocated, both fast memory and slow memory have
identical copies of segment Y. As a result, allocating Z
requires nothing more than overwriting Y with the contents
of the newly allocated segment Z. The right example (Dirty)
illustrates a case in which Y is modified and thus the copy of
Y held in fast memory is unique. Allocating Z, in this case,
requires reading Y from fast memory (∂) and Z from slow
memory (∑) simultaneously. After storing them in buffers
in the memory controller, Z is written back to fast memory
(∏), and Y is written back to slow memory (π).
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Figure 5. Cache allocation.

In contrast to the cache allocation, the PoM architecture
makes all of both fast and slow memory available to the
running software. To prevent duplicates and to ensure that
all data is preserved as data is moved back and forth between
fast and slow memory, PoM replaces the traditional cache
allocation with a swap operation. The PoM swap operation,
illustrated in Figure 6, differs depending on the contents
of the segment displaced from fast memory. The PoM
swap operation on the left (PoM Fast Swap1) occurs when
the displaced segment X was originally allocated by the
operating system to fast memory. In this case, a request to
segment Z in slow memory requires segments X and Z to
be read simultaneously (∂,∑) from fast and slow memory
into on-chip buffers. The swap completes after copying Z
from the on-chip buffer to fast memory (∏) and copying X
from the buffer to slow memory (π).
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Figure 6. Fast swap operation in the PoM architecture.

As different segments from slow memory are swapped
into fast memory, the straightforward swap operation previ-
ously described will result in segments migrating to different
locations in slow memory, as illustrated in Figure 6 (PoM
Fast Swap2). In the example, a request to segment Y causes a
second swap after Swap1. The second swap (Swap2) simply
swaps segment Y with segment Z, resulting in segment Z
assuming the position in slow memory that was originally
allocated to segment Y. With more swaps, all slow memory
segments could end up in locations different than their
original location. This segment motion between different
locations in slow memory implies that the remapping table
must not only identify the current contents of fast memory,
but must also track the current location of all segments in
slow memory. Note that recording only the segment number
brought into fast memory, as the remapping entry shown in
Figure 3, would not allow this fast swap in most cases. The
ability to support segment motion throughout slow memory
increases the size and complexity of the remapping table,
but greatly simplifies the swapping operation.
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Figure 7. Slow swap operation in the PoM architecture.

An alternative approach to remapping segments requires
segments to always return to their original position in slow
memory. In this approach, the positions of all segments in



slow memory can be inferred from their page table physical
address, with the exception of segments currently mapped
to fast memory. To ensure this, we can employ a second
swapping algorithm depicted in Figure 7 (PoM Slow Swap).
In the example, as in PoM Fast Swap2, a request to segment
Y causes a swap with segment Z, currently in fast memory.
In this case, however, rather than perform a simple swap
between Z and Y, we restore Z to its original position in slow
memory, currently occupied by X. We accomplish this in
four steps: (A) Fetching Z and Y simultaneously (∂,∑); (B)
Writing Y to fast memory (∏) and simultaneously fetching
X from slow memory (π); (C) Freeing X’s location then
writing Z back to its original location (∫); (D) Writing X to
Y’s previous location in slow memory (ª). The slow PoM
swap generally requires twice as much time as the fast PoM
swap with each of the four steps requiring the transfer of a
segment either to or from slow memory.

D. Segment Remapping Table (SRT)

The segment remapping table (SRT) size depends on the
swapping type we support. The PoM slow swap ensures
that all data in slow memory is stored at its original
location as indicated by its page table physical address. As
a result, the SRT can include remapping information only
for the segments in fast memory. Conversely, PoM fast swap
allows data to migrate throughout slow memory; thus, the
remapping table must indicate the location of each segment
in slow memory. For instance, consider a system consisting
of 1GB of fast memory and 4GB of slow memory divided up
into 2KB segments. This system would require a remapping
table with the ability to remap 512K (1GB/2KB) segments if
it implemented slow swaps, and 2M (4GB/2KB) segments if
it implemented fast swaps. Whether to use fast or slow swaps
is decided based on the system configuration and hardware
budgets. The discussion in the remainder of this section will
focus on a remapping table designed to support fast swaps.
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In the case of fast swaps with the previous system
configuration, a total of five possible segments compete for
a single location in fast memory, and the other segments
will reside in one of the four locations available in slow
memory. The SRT needs to record which of the five possible
segments currently resides in each of five possible locations.
Figure 8 illustrates the organization of the remapping table
with the five segments, V, W, X, Y and Z competing for a
single location in fast memory. Each remapping entry in the
SRT contains tags for four of the five segments; the contents
of the fifth segment can be inferred from that of other
segments. In addition to the four 3-bit tags, the remapping

table contains a shared 8-bit counter used to determine when
swapping should occur (Section IV-F). Co-locating the tags
for conflicting segments has two advantages. First, since
all swaps are performed between existing segments, this
organization facilitates updates associated with the swap
operation. Second, it facilitates the usage of the shared
counter that measures the relative usage characteristics of the
different segments competing for allocation in fast memory.

E. Segment Remapping Cache (SRC)

The remapping cache must be designed with two con-
flicting objectives in mind. On the one hand, a desire to
minimize misses provides an incentive to increase capacity
and associativity. On the other hand, increasing capacity
can increase access latency, which negatively impacts the
performance of both hits and misses. To strike this balance,
we choose a 32KB remapping cache with limited (4-way)
associativity. On an SRC miss, we capture limited spatial
locality by fetching both of the requested remapping entry
and the second remapping entry that cover an aligned 4KB
region. It is worth noting that with a protocol similar to
DDR3, our fast memory will deliver 64B blocks. Although
a single 64B block would contain tens of remapping entries,
we found that SRC pollution introduced by allocating a large
number of remapping entries outweighed the spatial locality
we could harvest. Since we modeled 4KB OS pages, any
spatial locality that existed beyond a 4KB region in the
virtual address space could potentially have been destroyed
after translation to the physical address space. It is also
noted that an SRC hit for a given memory request does not
guarantee that the requested data is found in fast memory.

F. Segment Activity Tracking

We previously discussed in Section III-C that a con-
ventional segment tracking/replacement mechanism is not
suitable for a hardware-managed PoM architecture, and a
tracking mechanism for PoM needs to respond quickly with
a low storage overhead (e.g., a small number of counters,
fewer bits per counter). In this section, we discuss the
tracking/replacement mechanism for our PoM architecture.

1) Competing Counter: To make a segment swapping
decision, we need to compare the counter values of all
involved segments at a decision point (e.g., sorting). Here,
the information of interest is in fact the one relative to
each other rather than the absolute access counts to each
segment. For example, assume that one slot exists in fast
memory with both segments A and Y competing for the
slot, which is currently taken by segment Y. To decide which
segment should reside in fast memory, we allocate a counter
associated with a segment in fast memory (segment Y) and
another segment in slow memory (segment A). During an
application run, we decrement the associated counter on
an access to segment Y, and increment it on an access to
segment A. By having this competing counter (CC), we can
assess which of the two segments has been accessed more
during a certain period, which is useful for swap decisions.
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Figure 9. Competing counters.

Figure 9 illustrates a general case in which multiple slots
exist in fast memory, while also a number of segments
are competing for the slots. At first blush, the CC-based
approach seems to incur high overhead since the com-
peting counters need to be allocated to all combinations
of the segments in fast and slow memory, as shown in
Figure 9(a) (counters shown only for segment Y due to
space constraints), if segments are allowed to be mapped
into any location in fast memory. However, thanks to the
segment-restricted remapping described in Section IV-B, the
number of competing counters required is in fact bounded
to the number of segments in slow memory, as shown
in Figure 9(b). Although this already reduces the storage
overhead compared to the tracking structure in Section III-C
while providing more responsiveness, we can further reduce
the storage overhead by sharing a single counter between
competing segments, as shown in Figure 9(c). This reduces
the number of counters to a single counter for each segment
in fast memory. In this shared counter case, the segment that
has just triggered swapping is chosen for allocation in fast
memory.

Sharing the competing counters between competing seg-
ments provides us with two benefits. First, it reduces the
overall memory capacity required by the segment remapping
table (Section IV-D). Second, and more importantly, it
reduces the size of each SRC entry by a little more than 50%,
allowing us to effectively double its capacity. Furthermore,
sharing counters between competing segments seems to have
little to no effect on the performance of our replacement
algorithm. Theoretically, references to segment A could have
incremented the shared counter just below a threshold, and
segment C could cause the counter to reach the allocation
threshold and is chosen for allocation. In practice, however,
we found this to be rare since the usage of different segments
among competing segments tends to be highly asymmetric.
Even though this rare case could happen, it is likely to have
a temporary effect, and the highly-referenced segment would
end up residing in fast memory soon afterwards.

2) Swapping Operation: Swapping occurs when the
counter value is greater than a threshold, which implies that
the segment currently residing in fast memory may not be
the best one. For example in Figure 9(c), when an LLC miss
request to segment A increments its associated counter, if the

resulting counter value is greater than a threshold, segments
A and Y will be swapped and their associated counter will
reset.

An optimal threshold value would be different depending
on the application due to the different nature of memory
access patterns. To determine a suitable swapping rate for
different applications, the PoM architecture samples memory
regions. The locations in fast memory are grouped into 32
distinct regions in an interleaving fashion, and four regions
are dedicated to sampling, while other 28 regions follow
the threshold decision from sampling. The segments in the
sampling regions modify the remapping table/cache when
their counter values are greater than the assigned thresholds,
but the actual swapping is not performed for the segments
restricted to the sampling region. For the memory requests
that target sampling regions, we simply get the data with
static mapping without looking up in the remapping table
(i.e., DRAM PA = Page Table PA). In order to drive the
suitable swapping rate, we collect the following information
for each sampling region:

• Nstatic: # of memory requests serviced from fast memory
with static mapping

• Ndynamic: # of memory requests expected to be serviced
from fast memory when swapping with a given threshold

• Nswap: # of expected swaps for a given threshold.

For each of four sampling regions, we then compute the
expected benefit (Bexpected) using Equation (1) and choose
the threshold used in the sampling region that provides
the highest non-negative Bexpected value at every 10K LLC
misses. In the case where such Bexpected does not exist
(i.e., all negative), the following regions do not perform any
swapping operations.

Bexpected = (Ndynamic �Nstatic)�K ⇥Nswap. (1)

Ndynamic is counted just by checking the remapping
table for the requests to the segments in fast/slow mem-
ory dedicated to the sampling regions. Nstatic is counted
when the requests target the segments originally assigned
to the fast memory. K is the number of extra hits required
for a swapped-in segment (over a swapped-out segment)
to compensate for the cost of a single swap. K differs
depending on the relative latency of fast and slow memory.
In our configuration (see Table I), the cost of a single fast
swap is about 1200 cycles, and the difference in access
latency between fast and slow memory is 72 cycles.3 Thus,
in general, the swapped-in segment needs to get at least
17 more (future) hits than the swapped-out segment for
swapping to be valuable. K is computed in hardware at boot
time. Note that the memory controller knows all the timing
parameters in both fast and slow memory. In our evaluations,
we use 1, 6, 18, and 48 for the thresholds in four sampling
regions, and we use K = 20.

3(11 ACT + 11 CAS + 32⇥4 bursts) ⇥ 4 (clock ratio of CPU to DRAM)
= 600 cycles. Fast swapping requires two of these (Section IV-C).



V. EXPERIMENTAL METHODOLOGY

Simulation Infrastructure: We use a Pin-based cycle-level
x86 simulator [20] for our evaluations. We model die-
stacked DRAM as on-chip fast memory, and we use the
terms of fast memory and stacked memory interchangeably
in our evaluations. The simulator is extended to provide
detailed timing models for both slow and fast memory as
well as to support virtual-to-physical mapping. We use a
128MB stacked DRAM and determine its timing parameters
to provide the ratio of fast to slow memory latency similar
to that in other stacked DRAM studies [5–10, 16]. Table I
shows the configurations used in this study.

Table I
BASELINE CONFIGURATION USED IN THIS STUDY

CPU
Core 4 cores, 3.2GHz out-of-order, 4 issue width, 256 ROB
L1 cache 4-way, 32KB I-Cache + 32KB D-Cache (2-cycle)
L2 cache 8-way, private 256KB (8-cycle)
L3 cache 16-way, shared 4MB (4 tiles, 24-cycle)
SRC 4-way, 32KB (2-cycle), LRU replacement

Die-stacked DRAM
Bus frequency 1.6GHz (DDR 3.2GHz), 128 bits per channel
Channels/Ranks/Banks 4/1/8, 2KB row buffer
tCAS-tRCD-tRP 8-8-8

Off-chip DRAM
Bus frequency 800MHz (DDR 1.6GHz), 64 bits per channel
Channels/Ranks/Banks 2/1/8, 16KB row buffer
tCAS-tRCD-tRP 11-11-11

Workloads: We use the SPEC CPU2006 benchmarks and
sample one-half billion instructions using SimPoint [21].
We selected memory-intensive applications with high L3
misses per kilo instructions (MPKI) since other applications
with low memory demands have very little sensitivity to
different heterogeneous memory management policies. To
ensure that our mechanism is not harmful for less memory-
intensive applications, we also include two applications that
show intermediate memory intensity. We select benchmarks
to form rate-mode, where all cores run separate instances
of the same applications, and multi-programmed workloads.
Table II shows the 14 workloads evaluated for this study
along with L3 MPKI of a single instance in each workload
as well as the speedup of the all-stacked DRAM config-
uration where all the L3 miss requests are serviced from
stacked DRAM instead of from off-chip DRAM. For each
workload, we simulate 500 million cycles of execution and
use weighted speedup [22, 23] as a performance metric.

Table II
EVALUATED MULTI-PROGRAMMED WORKLOADS

Mix Workloads L3 MPKI (single) All-stacked
WL-1 4 ⇥ mcf 71.48 1.88x
WL-2 4 ⇥ gcc 12.13 1.27x
WL-3 4 ⇥ libquantum 35.56 2.12x
WL-4 4 ⇥ omnetpp 7.30 1.47x
WL-5 4 ⇥ leslie3d 16.83 1.68x
WL-6 4 ⇥ soplex 31.56 1.81x
WL-7 4 ⇥ GemsFDTD 12.15 1.33x
WL-8 4 ⇥ lbm 32.83 3.37x
WL-9 4 ⇥ milc 18.01 1.75x

WL-10 4 ⇥ wrf 6.28 1.49x
WL-11 4 ⇥ sphinx3 11.89 1.52x
WL-12 4 ⇥ bwaves 19.07 2.00x
WL-13 mcf-lbm-libquantum-leslie3d N/A 1.87x
WL-14 wrf-soplex-lbm-leslie3d N/A 1.77x

VI. EXPERIMENTAL EVALUATIONS

A. Performance Results

Figure 10 shows the performance of our proposed scheme
and a few other static mapping/OS-based dynamic remap-
ping policies for comparisons. We use a baseline where no
stacked DRAM is employed, and all performance results are
normalized to the baseline.
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Figure 10. Speedup with our proposed mechanism compared to other
schemes (normalized to no stacked DRAM).

First, static(1:8) and static(1:4) show the
speedups when we assume that the OS would allocate
memory pages such that one ninth or one fifth of the total
pages are placed in fast memory for each workload. Static
mapping results show the performance improvement due to
having a part of memory that is accessed quickly without
making any changes to hardware or OS page allocation
policies. On average, we achieve a 7.5% (11.2%) speedup
over the baseline with this 1:8 (1:4) static mapping.

Our proposed scheme achieves a 31.7% performance
improvement over the baseline on average, and also shows
substantial performance improvements over static mappings.
Compared to static(1:4), our scheme improves perfor-
mance by 18.4% on average, and many of the evaluated
workloads show huge speedups due to serving more requests
from fast memory (see Section VI-B). On the other hand,
a few other workloads show performance similar to that
of static(1:4). This happens because of one of two
reasons. First, our dynamic scheme could determine that
the cost of page swapping would outweigh its benefit for
some workloads (e.g., WL-4 and WL-9), so the original page
allocation by the OS remains the same in both fast and slow
memories, and none (or only a small number) of the pages
are swapped in-between. Second, some workloads are not
as sensitive to memory access latency as others, so their
performance improvement due to our mechanism is limited
by nature (e.g., WL-2 and WL-7).

Next, OS-Managed and OS-Managed(Ideal) are OS-
based migrations with and without remapping overhead,
respectively. We use a mechanism similar to that used in
prior work [19]. In the mechanism, the OS first collects the
number of accesses (LLC misses) to each 4KB OS page
during an interval. Then, at the end of the interval, the most
frequently accessed pages are mapped into the fast memory
for the next interval. To mitigate remapping overheads, the
mechanism uses a 100M cycle interval (31.25 ms on a
3.2GHz processor) and also does not select the pages with
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Figure 11. Physical address translation breakdown.

fewer than 64 LLC misses.4 Also, if selected pages for the
next interval were already present in fast memory, the pages
are not moved. On average, the OS-based migration achieve
a 9.3% (19.1% without overhead) speedup over the baseline.

Compared to OS-Managed, our PoM achieves 20.5%
performance improvement. In our proposed scheme, we
start out with the same page allocation as in OS-Managed.
However, we continuously adapt and remap data into fast
memory at a fine granularity during the workload runtime,
whereas OS-Managed adapts to the working set changes at
a coarse granularity; so, the service rate from fast memory
of OS-Managed would be quite lower than our mechanism.
As a result, even assuming zero-cost overheads, such as
OS-Managed(Ideal), the OS-based mechanism performs
worse than ours.

B. Effectiveness of Remapping Cache
The effectiveness of the remapping cache is very crucial

to our two-level indirection scheme. Figure 11 shows the
percentage of memory requests serviced from fast mem-
ory along with the source of the translation (i.e., whether
translations are obtained from the remapping cache or the
remapping table).

The HIT FAST bar represents the percentage of requests
whose translations hit in the remapping cache and the
corresponding data are serviced from fast memory. The
HIT SLOW bar represents the percentage of requests whose
translations hit in the remapping cache but are serviced from
slow memory. MISS FAST and MISS SLOW represent
remapping cache misses that are serviced from fast and slow
memory, respectively. Note that the hit rate of the remapping
cache is independent of swapping schemes since it is a
function of an LLC-filtered memory access stream.

Our remapping cache is shown to be quite effective with
more than 95% hit rate for most workloads. The high
hit rate is due to the spatial locality in the lower levels
of the memory hierarchy. WL-1 and WL-4 are the only
benchmarks that show slightly lower hit rates due to the
low spatial locality.

C. Sensitivity to Remapping Cache Size
One of the main performance drawbacks of remapping is

that address translation latency is now added to the overall

4We have also performed experiments with shorter intervals and different
thresholds, but most of the workloads showed significantly lower perfor-
mance since the remapping overheads were too large to amortize.
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memory latency. For an effective design, most of translations
need to hit in the remapping cache to minimize the cost of
access serialization. This section analyzes the effectiveness
of different sizes of the remapping cache. Figure 12 shows
the hit rate of the remapping cache when we change its size
from 8KB to 64KB. Our workloads show high hit rates on
average even with the 8KB remapping cache. Only a few
workloads (e.g., WL-1) experience a bit higher number of
remapping cache misses with small size caches since their
accesses are spread out across large memory regions. Note
that we used simple LRU replacement for the remapping
cache. If needed, other replacement policies or techniques
(e.g., prefetching) could be used to improve the hit rate.

D. Swapping Overhead
Figure 13 shows the swapping overhead of our proposed

mechanism compared to the unrealistic ideal case in which
swapping has no overhead; i.e., swapping does not gener-
ate any memory requests, and updates the swapping table
automatically without using up any latency or bandwidth.
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Figure 13. Comparison with ideal swapping.

Most of our evaluated workloads show reasonable swap-
ping overhead since our mechanism enables swapping for
small data segments (i.e., 2KB segments) and also attempts
to avoid unnecessary swaps that are not predicted to improve
performance. Some workloads such as WL-4 and WL-9
show no swapping overhead. This is because our dynamic
scheme determines that the swapping would not be beneficial
compared to static mapping as discussed in Section VI-A.

Intuitively, the performance cost of page swapping dimin-
ishes as the number of hits per swap increases. This can be
achieved by swapping in more guaranteed-to-be-hit pages
into fast memory. However, such a conservative decision is
likely to reduce the amount of the memory requests serviced
from fast memory. Thus, we first need to make a careful
decision on when to swap in order to optimize the swapping
cost without sacrificing the fast memory service rate.



The swapping overhead may also be partially hidden
by performing swap operations in a more sophisticated
fashion. In our design, we already defer the write-backs of
swapped-out pages since they are likely to be non-critical.
More aggressively, we may delay the entire execution of
swapping operations until the memory bus is expected to
be idle (for a long enough time for swapping). We may
also employ a mechanism similar to the critical block first
technique; only the requested 64B block out of a 2KB
segment is first swapped into fast memory, and other blocks
are gradually swapped in when the bus is idle. These are
all good candidates to further alleviate the swapping cost
although they need more sophisticated hardware structures.

E. Sensitivity to Swap Granularity

In our mechanism, we manage remapping at a granularity
of 2KB segments. This is the same as the row size in the
stacked memory. This section discusses the sensitivity of
PoM as the granularity varies from 128B to 4KB.
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Figure 14. Speedup across different segment granularity.

Figure 14 shows the speedup across different segment
granularity. Using a smaller segment size has the advantage
of reducing the overhead of any individual swap. This allows
for more frequent swaps and increases the rate of serving
requests from fast memory. On the other hand, using a
smaller segment size loses the benefits of prefetching that a
larger granularity can provide. For the applications that have
spatial locality, employing a larger swapping granularity may
allow fast memory to service more requests, and the overall
swapping overhead can also be smaller due to high row
buffer hit rates. In addition, as the segment size decreases,
the overhead of the remapping table increases since it needs
to have more entries. This, in turn, reduces the effective
coverage of the remapping cache. When deciding on the
segment size, all these factors need to be considered. We
chose a 2KB segment size since it achieved a decent
speedup, while its overhead is still manageable.

F. Energy Comparison

Figure 15 shows the energy consumption of OS-managed
and our proposed heterogeneous memory systems compared
to no stacked DRAM. We compute the off-chip memory
power based on the Micron Power Calculator [24] and the
Micron DDR3 data sheet (-125 speed grade) [25]. Since no
stacked DRAM data sheet is publicly available, we compute
the stacked memory power based on the access energy and

standby power numbers reported in [26].5 The results show
that PoM reduces energy per memory access by an average
of 9.1% over the evaluated OS-managed policy. In general,
PoM migrates more data blocks between fast and slow mem-
ory than OS-based migration, which increases the amount
of energy used for data migration. However, the increased
energy could be amortized by the increased number of
hits in fast memory. More importantly, PoM’s performance
improvement reduces static energy in the memory system,
which leads to significant energy savings.
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Figure 15. Energy comparison between OS-based migration and our PoM.

G. Comparison to Hardware-Managed Cache
Figure 16 compares two different DRAM cache im-

plementations with two different implementations of PoM
including a naive version of PoM (Unmanaged) and our
proposal. LH-Style uses 64B lines similar to [6] but in-
cludes improvements found in subsequent work such as a
direct-mapped organization [7] and a hit-miss predictor [8].
The PoM-Style cache uses 2KB cache lines and an im-
proved replacement policy similar to our PoM proposal (Sec-
tion IV-F). The performance benefits we observe for the
PoM-Style cache over LH-Style result from the additional
prefetching due to the large 2KB lines and our effective
replacement policy.6
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Figure 16. Comparison to hardware-managed caches.

The last two bars depict alternative implementations of
PoM, both delivering the same capacity benefits. Unmanaged
depicts a naive implementation of PoM without the benefits
provided by the remapping cache and modified allocation
algorithm (competing counters). The performance of our
proposal is depicted on the far right. Since our experiments
do not account for the performance impact of page faults, the
best we can expect from our proposal is to match the perfor-
mance benefits of PoM-Style. In fact, our proposal delivers

5Although our stacked memory is not identical to the one used in [26],
we have verified that the conclusion remains the same across reasonably
different power/energy numbers expected for die-stacked DRAM.

6The LH-style cache can be managed similarly to PoM-Style using
prefetching and bypass techniques, thereby providing better performance.



a speedup close to what is achieved with PoM-Style, and
it does this while avoiding data duplication and allowing
running software to use all available fast and slow memory;
thus, for the running software that does not fit in slow
memory, PoM would provide much higher speedups than
caches when page fault costs are considered.

H. Sensitivity to Fast to Slow Memory Capacity Ratio
Figure 17 shows the average speedup of static mapping

and our proposed scheme over no fast memory across
different ratios of fast to slow memory capacities. As the
ratio becomes larger, the percentage of memory requests
serviced from fast memory is likely to increase, and we
observe a large performance improvement even with static
mapping. Although, the potential of our dynamic scheme
would decrease as the ratio of fast to slow memory ca-
pacity increases, our results show that the proposed scheme
still leads to non-negligible performance improvements over
static mapping (a 13.8% improvement for a 1:1 ratio). For
smaller ratios, we achieve much higher speedups compared
to static mapping (e.g., we achieve a speedup 20% over static
mapping when the ratio is 1:8).
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Figure 17. Speedups of static mapping and our scheme across different
ratios of fast to slow memory.

I. Transparency to Virtual Memory Subsystem
PoM is transparent to current virtual memory/TLB sub-

systems and also ensures that a functionally correct memory
image is maintained in the context of OS-invoked page
migrations, copy-on-write, TLB shoot-downs, I/O requests,
etc. This is because in today’s systems all memory requests
(even from other devices such as disk and network) must
go through the system-on-chip memory controller to access
memory. In PoM, these requests must all look up the
SRC/SRT as they pass through the memory controller and
before they access DRAM physical memory. For example,
OS-invoked physical page migrations may result in page
table updates and TLB shoot-downs, but since these involve
the OS-maintained virtual-to-physical mappings and not the
PoM-maintained physical page to segment mappings, these
would be handled in a PoM system just like they would
in a system without PoM. These events might make the
physical segments allocated in stacked memory no longer
hot (even dead); then, PoM would have no knowledge of the
migration. However, since PoM uses a dynamic replacement
algorithm and the competing counters are constantly com-
paring eviction and allocation candidates, the cold segments
would quickly be replaced by hotter segments.

VII. RELATED WORK
A large body of research has investigated non-uniform

memory access (NUMA) architectures. Cache-coherent
NUMA (CC-NUMA) architectures reduce traffic to remote
nodes by holding remote data in the cache of each processing
node [13]. Cache-only memory architectures (COMA) [27]
use memory as a hardware-managed cache, like the ALL-
CACHE design in the KSR1 system [28]. An S-COMA
system allocates part of the local node’s main memory to
act as a large cache for remote pages [29]. Falsafi and
Wood proposed Reactive NUMA (R-NUMA) that reacts to
program behavior and enables each node to use the best
of CC-NUMA or S-COMA for a particular page [15]. The
Sun WildFire prototype showed that an R-NUMA-based
design can significantly outperform a NUMA system [30].
Although the heterogeneous memory system analyzed in
our paper has properties similar to a NUMA system (with
variable memory latencies), our work differs from traditional
NUMA research since we treat both the fast and slow
memory as local to a node.

Many recent papers on heterogeneous memory systems
have investigated the use of fast memory as a cache for the
slow memory [5–10, 31]. The key difference between PoM
and all previous work on DRAM caches is that PoM pro-
vides higher total memory capacity as compared to DRAM
caches. Enabling PoM to maximize memory capacity re-
quires quite different design approaches from previously
described DRAM cache architectures, including support for
complex swapping operations (Section IV-C) and memory
permutation (Section IV-D for fast-swap) that results when
different memory locations are swapped. The benefits of the
additional memory capacity provided by PoM extend beyond
the performance benefits harvested through reduced disk
swapping, directly impacting one of the attributes consumers
use when making a purchase decision.

Some prior work has explored managing heterogeneous
memory systems using software. Loh et al. [19] studied the
benefits and challenges of managing a die-stacked, heteroge-
neous memory system under software control. The authors
discussed that even OS-managed heterogeneous memory
systems require non-negligible hardware/software overheads
for effective page activity monitoring and migration. RAM-
page [32] proposed managing an SRAM-based last-level
cache by software as the main memory of a machine,
while using DRAM as a first-level paging device (with disk
being a second-level paging device). Machanick et al. [33]
showed that a RAMpage system can outperform a traditional
cache system when the speed gap between the processor
and DRAM increases. However, the RAMpage approach
presents a significant practical challenge for operating sys-
tems that have minimum memory requirements, whereas our
PoM approach maximizes the amount of memory that could
be allocated by the OS. Lee et al. [17] proposed Tiered-
Latency DRAM, which provides heterogeneous access la-
tency, and introduced its use cases (caches or OS-visible
memory). However, the use case as OS-visible memory was



briefly mentioned without details. As shown in other work,
it is not trivial to effectively enable software-/hardware-
managed heterogeneous memory systems, which we address
in this work. Ekman and Stenstrom [34] also discussed
a two-level main memory under software management. In
contrast to our approach, these software-managed memory
systems are less responsive to program phase changes.

Some papers have investigated hardware implementations
for supporting page migrations in heterogeneous memo-
ries [16, 35]. The work that is most closely related to our
proposal is the one from Dong et al. [16]. Their hardware-
only implementation maintains a translation table in the
memory controller, which keeps track of all the page remap-
pings. To keep the table size small, their implementation uses
large 4MB pages, which incurs both high migration latencies
and increased bandwidth pressure on the slow memory.
In comparison, our approach supports small page sizes by
keeping the remapping table in the fast memory and caching
the recent remapping table accesses in a small remapping
cache. Ramos et al. [35] propose hardware support for OS-
managed heterogeneous memories. In their work, the page
table keeps a master copy of all the address translations, and
a small remapping table in the memory controller is used
to buffer only the recent remappings. Once the remapping
table becomes full, the buffered remappings need to be
propagated to the page table, requiring the OS to update
the page table and flush all the TLBs. Thus, their approach
requires costly OS interventions, which our technique avoids
by maintaining page remappings in a dedicated hardware-
managed remapping table in the fast memory.

VIII. CONCLUSION

Heterogeneous memory systems are expected to become
mainstream, with large memory structures on-die that are
much faster to access than conventional off-die memory. For
some market segments, using gigabytes of fast memory as
a cache may be undesirable. This paper presents a Part-of-
Memory (PoM) architecture that effectively combines slow
and fast memory to create a single physical address space
in an OS-transparent fashion. PoM employs unique designs
and provides substantial speedups over static mapping and
alternative OS-based dynamic remapping.

There likely remain many other research opportunities in
heterogeneous memory systems. For instance, depending on
the capacity and bandwidth requirements of the running soft-
ware, we may want to dynamically configure fast memory
as either a cache, PoM, or even software-managed memory
(as in [36] but for off-chip bandwidth). Studies on how to
support such flexibility in heterogeneous memory systems
could be one of the good directions for future research.
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