SDM: Sharing-enabled Disaggregated Memory System with Cache Coherent Compute Express Link

Hyokeun Lee⁺ Kwanseok Choi^{*} Hyuk-Jae Lee^{*} Jaewoong Sim^{*}

*North Carolina State University *Seoul National University

Outline

Introduction

Motivation

- SDM: Sharing-enabled Disaggregated Memory System
 - CXL-compatible Designs
- Evaluation

Conclusion

Outline

Introduction

Motivation

- SDM: Sharing-enabled Disaggregated Memory System
 - CXL-compatible Designs
- Evaluation

Conclusion

Demand for Large Memory Capacity

More DIMMs within the node?

Limited # Pins

More DIMMs within the node?

Limited # Pins

More DIMMs within the node?

Limited # Pins

More DIMMs within the node?

Limited # Pins

Integrate more server nodes?

More DIMMs within the node?

Limited # Pins

Integrate more server nodes?

More DIMMs within the node?

Limited # Pins

Integrate more server nodes?

Underutilized Cores

More DIMMs within the node?

Limited # Pins

Integrate more server nodes?

Underutilized Cores

More DIMMs within the node?

Limited # Pins

Integrate more server nodes?

Underutilized Cores

Solution:

Disaggregated Memory!

- **Q**: **Communication** between server nodes and memory nodes?
 - Low latency
 - User-transparency

	RDMA	CXL
Low-latency		
	Software-stack Overhead	Cache Coherence
User-transparency	RDMA API	Load/Store Semantics

Outline

Introduction

Motivation

- SDM: Sharing-enabled Disaggregated Memory System
 - CXL-compatible Designs
- Evaluation

Conclusion

Multi-Host Data Sharing Opportunity

Q: How many cachelines are shared across hosts?

Multi-Host Data Sharing Opportunity

Q: How many cachelines are shared across hosts?

Multi-Host Data Sharing Opportunity

Q: How many times are the shared cachelines accessed?

Goal 2: How to design a multi-host coherence control flow?

CXL Protocols

- 1. CXL.io
 - Device Management
- 2. CXL.cache
 - Coherency Management
- 3. CXL.mem
 - Memory Read/Write

Goal 2: How to design a multi-host coherence control flow?

Protocol	Message	Туре
CXL.cache	RdOwn	
	RdAny	Device Request
	CLFlush	
	GO-*	Host Response
CXL.mem	MemRd	
	MemWr	Host Poguest
	MemInv	Host Request
	MemRdFwd	
	Cmp-*	Device Response

Goal 2: How to design a multi-host coherence control flow?

Protocol	Message	Type
CXL.cache	RdOwn	
	RdAny	Device Request
	CLFlush	
	GO-*	Host Response
CXL.mem	MemRd	
	MemWr	Host Poquest
	MemInv	Host Request
	MemRdFwd	
	Cmp-*	Device Response

CXL Protocols

- A set of valid request/response pairs between Host and Device
- Design a sharing-enabled control flow strictly using the valid pairs

Goal 2: How to design a multi-host coherence control flow?

PdOwn	Protocol	Message	Туре	CXL Protocols
A set of valid request/respor		RdOwn		 A set of valid request/response

Our Approach: Sharing-enabled Control Flow
Let's exploit CXL.cache messages

CXL.mem	MemInv MemRdFwd	Host Request
	Cmp-*	Device Response

Outline

- Introduction
- Motivation
- SDM: Sharing-enabled Disaggregated Memory System
 - CXL-compatible Designs
 - Snoop Emulation
 - CXL-compatible Control Flow
- Evaluation
- Conclusion

Memory Node

Key Idea: Let the memory node track coherence states

29

Key Idea: Let the memory node track coherence states

30

Key Idea: Let the memory node track coherence states

1. Memory Request from Host to Device

Key Idea: Let the memory node track coherence states

- 1. Memory Request from Host to Device
- 2. Coherency Request from Device to other Hosts

Key Idea: Let the memory node track coherence states

- 1. Memory Request from Host to Device
- 2. Coherency Request from Device to other Hosts
- 3. Coherency Response from other Hosts to Device

Key Idea: Let the memory node track coherence states

- 1. Memory Request from Host to Device
- 2. Coherency Request from Device to other Hosts
- 3. Coherency Response from other Hosts to Device
- 4. Memory Response from Device to Host

Memory Node

Key Idea: Let the memory node track coherence states

35

CXL-compatible Control Flow

Straightforward: Invalidation-based Control Flow (INV-CF)

CXL-compatible Memory Management

Q: How to allocate/deallocate pages from disaggregated memory?

Requirement

Alloc/Dealloc messages should not interfere with RD/WR requests

Our Approach

• Define a new message using <u>byte-15</u> of <u>CXL.io vendor-defined</u> message fields

CXL-compatible Memory Management

Q: How to allocate/deallocate pages from disaggregated memory?

Requirement

Alloc/Dealloc messages should not interfere with RD/WR requests

Our Approach

• Define a new message using <u>byte-15</u> of <u>CXL.io vendor-defined</u> message fields

CXL-compatible Memory Management

Q: How to allocate/deallocate pages from disaggregated memory?

Requirement

Alloc/Dealloc messages should not interfere with RD/WR requests

Our Approach

• Define a new message using <u>byte-15</u> of <u>CXL.io vendor-defined</u> message fields

	+0		+1				+2				+3
Byte 0>	Fmt	Type	R T		A tt r	L T N H	T E P P	Att r	AT		Length
Byte 4>	Requestor ID					Tag				Message Code	
Byte 8>	Reserved					Vendor ID = CXL					
Byte 12>	Reserved						CXL VDM Code				

SDM Architecture

Host-side CXL-compatible hardware

SDM Architecture

Host-side CXL-compatible hardware

Coherence Bridge (COHB)

Manage system-level directory

CXL Home Agent

Generate coherence messages

Our Extension

• Generate <u>allocate/deallocate messages</u>

SDM Architecture

Device-side CXL-compatible hardware

Device Coherency Agent (DCOH)

- Generates CXL.cache messages
- Can have a snoop filter

Our Extension

Send snoop messages to abstracted hosts

More Discussions in the Paper

- Snoop Emulation
- Sharing-enabled Control Flow
- Memory Management Mechanism
- SDM Architecture

- Address Translation Mechanism
 - How to implement it with CXL.io messages
- Speculative Access
 - How to overcome the overhead of access control check

Outline

Introduction

Motivation

- SDM: Sharing-enabled Disaggregated Memory System
 - CXL-compatible Designs
- Evaluation

Conclusion

Methodology

Performance Evaluation

In-house simulator using Intel PIN tool

Evaluated Workloads

- PARSEC (Compute-intensive)
- Intel GAP (Memory-intensive)

Baseline

• INV-CF: CXL 3.0-like invalidation-based control flow

System Parameters

System					
Configuration	4 Compute Nodes 1 Memory Node				
Compute Node					
Core	8 cores				
L1 Cache	8-way, 32KB, 1ns				
L2 Cache	4-way, 256KB, 4ns				
L3 Cache	16-way, 2MB, 40ns				
Memory Node					
Latency	80ns				
Interconnect					
Latency	500ns				

Performance

Performance

Performance

Outline

Introduction

Motivation

- SDM: Sharing-enabled Disaggregated Memory System
 - CXL-compatible Designs
- Evaluation

Conclusion

Conclusion

Goal

 Design a CXL-compatible, Sharing-enabled Disaggregated Memory System

Solution

- Snoop Emulation enables multi-host coherence management
- SHA-CF enables data sharing between multiple hosts

Result

 SDM achieves an average of 1.5x speedup over naïve CXL-based disaggregated memory systems

Thank You!