
Accelerating Binarized Neural Networks:
Comparison of FPGA, CPU, GPU, and ASIC

Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh and Debbie Marr
Accelerator Architecture Lab, Intel Corporation

Abstract— Deep neural networks (DNNs) are widely used in

data analytics, since they deliver state-of-the-art accuracies.
Binarized neural networks (BNNs) are recently proposed
optimized variant of DNNs. BNNs constraint network weight
and/or neuron value to either +1 or -1, which is representable in 1
bit. This leads to dramatic algorithm efficiency improvement, due
to reduction in the memory and computational demands. This
paper evaluates the opportunity to further improve the execution
efficiency of BNNs through hardware acceleration. We first
proposed a BNN hardware accelerator design. Then, we
implemented the proposed accelerator on Aria 10 FPGA as well
as 14-nm ASIC, and compared them against optimized software
on Xeon server CPU, Nvidia Titan X server GPU, and Nvidia
TX1 mobile GPU. Our evaluation shows that FPGA provides
superior efficiency over CPU and GPU. Even though CPU and
GPU offer high peak theoretical performance, they are not as
efficiently utilized since BNNs rely on binarized bit-level
operations that are better suited for custom hardware. Finally,
even though ASIC is still more efficient, FPGA can provide
orders of magnitudes in efficiency improvements over software,
without having to lock into a fixed ASIC solution.

Keywords— Deep learning, binarized neural networks, FPGA,
CPU, GPU, ASIC, data analytics, hardware accelerator.

I. INTRODUCTION
The proliferation of Internet technologies led to the

abundance and rapidly growing digital data, from sources such
as social media, blogs, Internet-of-things (IoT) applications,
etc. Data analytics extract knowledge from such data, often by
using machine learning (ML) algorithms. In particular, deep
neural networks (DNNs) have been widely adopted, as they
show state-of-the-art accuracies for various analytics
classification tasks (e.g., computer vision, speech, etc).

With advances in DNNs, there is a trend towards deeper
networks that consequently carry more network parameters
with increased model size. For example, AlexNet [8] contains
60M parameters, which demands storage size of 240MB when
stored as 32-bit numbers.

Larger DNN models are challenging to execute efficiently.
Especially, in fully connected layers where there is no data
reuse, processing a larger model that does not fit in on-chip
RAMs would lead to off-chip DRAM accesses. Such accesses
are very energy inefficient compared to on-chip operations
(e.g., for 45nm CMOS [9], a 32-bit DRAM access requires
172x more energy than a floating point multiply). Moreover,
performance becomes limited by bandwidth available to access
the model from DRAM. Batching multiple inputs together can
help improve data re-use, but in practice only small batch size
is tolerable due to real-time latency requirements in analytics

servers [3]. For IoT platforms, real-time requirements will be
even more stringent, and batching may not be feasible at all.

Binarized Neural Networks (BNNs) [1][2] have very
recently been proposed to address the aforementioned
challenge. A BNN offers an extremely more compact
representation of network weights and neuron values than a
normal DNN by constraining each value to either +1 or -1. As
such, storage need is dramatically reduced since the weights
can be stored in a single bit (i.e., +1 stored as 1, and -1 as 0).
Furthermore, multiply operations can be replaced by bit-wise
operations instead, thereby reducing computational demand as
well. So far, BNNs have been shown to offer comparable
accuracies to full-precision DNNs for some known datasets
(e.g., CIFAR10), and they are actively being studied to
improve accuracies for more datasets (e.g., ImageNet).
However, while prior works [1][2] have offered in-depth
algorithm studies and analyses of BNNs, we are not aware of
any that has proposed a hardware accelerator for BNNs.

Neural network analytics workloads are deployed in a wide
range of settings, from high-end servers in data centers for
cloud-scale analytics to mobile platforms for Internet-of-
Things (IoT) applications. In all cases, there is a strong need
for extreme energy efficiency in addition to high performance.
To this end, both cloud servers as well as IoT platforms have
become heterogeneous in recent years, where they integrate
hardware accelerators alongside general purpose CPUs to
deliver significant execution efficiency for computations
offloaded to these accelerators, while maintaining generality to
execute the rest of the workloads. FPGAs, GPUs, and ASICs
are the well-known accelerators available in the market today.
In particular, FPGAs have become more widely adopted in
cloud servers as well IoT platforms. Leading technology
companies are pushing towards integrating FPGAs into data
centers (e.g., Intel Xeon+FPGA, Microsoft Catapult). There are
also IoT platforms (e.g., Altera SoC FPGA family) integrating
embedded processor(s) and FPGA in a single package.

This paper investigates the opportunities for accelerating
BNNs. We made the following contributions. First, we propose
hardware accelerator architecture for BNNs. Second, we
explore software enhancements for BNNs (e.g., replace full-
precision with binary operations) for CPU and GPU. Third, we
evaluate our accelerators on state-of-the-art Altera Aria 10
FPGA and 14nm ASIC, and compare them against optimized
software on a cloud-server with Intel Xeon CPU and Nvidia
Titan X GPU and IoT platform with mobile Nvidia TX1 GPU.
We show that software optimized for BNNs deliver significant
performance improvements over standard DNNs. Moreover,
we show that hardware accelerators offer further order of
magnitude efficiency improvements over optimized BNN

978-1-5090-5602-6/16/$31.00©2016 IEEE

software CPU and GPU implementations, since they take better
take advantage of BNN bitwise data formats and operations.

The rest of the paper is organized as follows. Section II
gives background on ML analytics and BNNs. Section III
presents the proposed BNN accelerator. Section IV details the
BNN software optimizations on CPU and GPU. Section V
presents our evaluation results. Finally, section VI and VII
offer related work and concluding remarks, respectively.

II. BACKGROUND

A. Machine Learning for Data Analytics
Classification vs. Training. Many data analytics

workloads rely on machine learning (ML) algorithms. A
typical ML setup for data analytics consists of two phases.
First, during training phase, a known set of data samples is fed
into an ML algorithm, which then creates a model with
predictive power. Then, in the classification phase, this model
is used by the ML algorithm to make predictions for any new
given data samples. This paper focuses on binarized neural
networks (BNNs) for classification phase.

Batched Classification. In the classification phase, a
popular optimization is to process a batch of multiple input
samples together to improve data reuse and throughput.
However, batching increases processing latency since a batch
of outputs is produced at a time, instead of a single output at a
time. Moreover, batching can increase implementation
complexity, due to the need to group incoming requests into
batches and schedule them properly for processing. In practice,
it can be impractical to use large batch sizes. E.g., in a
commercial analytics based on neural networks in [3], ~90% of
the time there are only up to 4 inputs that can be grouped
together (batch size of 4), with a maximum of 10 inputs (batch
size of 10). This is due to the need to meet the stringent
processing latency constraints. This paper considers normal as
well as batch-mode in our evaluations.

Fig. 1. In binarized neural networks, the matrix x vector operation to compute
each network layer can be replaced by xnor and bit counting because weights
and neurons are constrained to either +1 or -1, each representable in 1-bit.

B. Binarized Neural Networks (BNNs)
In a deep neural network, a fully connected layer performs

the following computation

 vo = f(W.vi + b) (1)

Where vi is a vector of input neurons, W is a matrix of the
network weights, b is the bias, and vo is the vector of output
neurons for the layer. f is the activation function, such as
Rectified Linear Unit (ReLU). Optionally, f may also include
normalization (e.g., batch normalization [10]) prior to applying
the activation function. Often times, b can be merged into vi.
Figure 1(a) shows an example DNN layer computation as a W
matrix x vi vector operation.

There has been recent trend towards deeper networks with
more parameters, since such networks can provide better
accuracies. As such, the size of W, vi, and vo have become
noticeable large. For example, one of the fully connected layers
in AlexNet [8] and VGG [11] use a 4K x 4K weight matrix
(W). When each weight is represented as a 32-bit number,
storing the W matrix would require 64MB of storage. In
practice, processing such a model efficiently is very
challenging, since it does not fit in on-chip RAMs of a typical
system. Hence, some or most of the model will have to reside
in DRAM memory, which is power consuming and has much
lower bandwidth than on-chip RAMs, thereby imposing
performance constraints. As stated earlier, DRAM accesses are
significantly more energy consuming than on-chip operations.

Binarized neural networks (BNNs) have the potential to
address this issue. BNNs [1][2] have been proposed recently to
improve the efficiency of the standard neural networks. In a
BNN, each network weight and neuron value is constrained to
be of only two possible values, +1 or -1. As such, it can be
represented using a single bit. Therefore, BNNs require
significantly less storage than standard DNNs. In our previous
example of 4K x 4K weight matrix, instead of needing 64MB
storage when using 32-bit number representation, a binarized
weight matrix would require only 2MB storage (i.e., 32x less).
BNNs also improve computation efficiency, as discussed next.

There are three types of computations in a BNN.

Binarized Matrix x Full-Precision Vector. In the first
layer, the input neurons represent the input sample data. Thus,
they cannot be binarized. So, in this case, vi is still represented
using full 32-bit floating or fixed point. Each weight in a
binarized weight matrix (Wb), however, is a 1-bit value. Thus,
the computation for the first layer is a multiplication of 32-bit
vi against binarized Wb. This operation can efficiently be done
by adjusting the sign bit of vi against the 1-bit weight of Wb.
I.e., if they are of the same sign, the output should maintain the
sign bit. Otherwise, the output should have the opposite sign.

Binarized Matrix x Binarized Vector. Since activation
function in BNN [1][2] produces a +1 or -1 value, neurons (vi
and vo) after the first BNN layer would be representable as 1-
bit values. As such, the computation multiplies a binarized
vector of input neurons (vib) against a binarized weight matrix
Wb. Such operation can be done using xnor and a variant of a
population count (pcnt), thereby eliminating the need for full-
precision operations. Figure 1(b) illustrates how a matrix x
vector operation of +1 and -1 values can be binarized and
computed using xnor and pcnt.

Normalization and Activation Function. Lastly,
normalization and activation function are applied to finalize the

output neurons. It has been recommended [2] to use batch
normalization [10] with BNN, which involves applying several
constant parameters obtained from training phase (i.e., ϒ, β).
For the activation function, ReLU is very commonly used, and
is also used in BNN [2]. As such, this paper uses ReLU.

Fig. 2. The proposed accelerator for binarized neural networks (BNNs).

Fig. 3. Sequences of operations that a processing element takes to process a
BNN layer. (a) Load initial ACC constant. (b) Multiplication of input neurons
against weights. (c)(d) Normalization and activation function.

III. HARDWARE ACCELERATOR
We propose hardware accelerator architecture for BNNs. It

supports all the operations needed to process arbitrary BNNs. It
is especially designed to realize the efficiency benefits of
BNNs. It contains a scalable number of processing elements,
along many distributed on-chip RAMs. The network
parameters (e.g., binarized weights, normalization constants)
are kept in these on-chip RAMs and supplied to the many PEs

performing the computation in parallel. In result, the many on-
chip RAMs deliver sufficient bandwidth to the PEs to achieve
high throughput at extreme efficiency. This section first
describes the architecture of the proposed accelerator. Then, it
details implementations of such architecture onto an Altera
Aria 10 FPGA as well as 14nm ASICs.

A. Accelerator Architecture
Architecture Details. The high-level architecture of the

proposed BNN accelerator is shown in Figure 2(a). The
architecture consists of a number of processing elements (PEs).
It can be scaled up (or down) by adding more (or less) PEs.
Each PE works on computing either a single full-precision
neuron value or multiple binarized values in a packed format.
The PEs are connected to on-chip RAM buffers, which are
used to keep the input and output neuron values, as well as
temporary values, for the BNN layers being processed. The
data management unit (DMU) handles the movement of data in
and out of the accelerator. It brings in the input neuron values
and writes out the final output neuron values. It also loads
network parameters to internal PE RAMs.

The PE internal design is shown in Figure 2(b). It consists
of a local RAM that keeps network weights. Each weight is 1-
bit. In our PE design, we pack 32 weights into a 32-bit value
for efficient processing. The RAM also keeps initialization
(e.g., 0, b, b-μ) and batch normalization (i.e., β, ϒ) parameters.

A PE also contains a multiplier unit (MUL), an adder unit
(ADD), an accumulator register (ACC), and an AF/I2F unit. To
cover all BNN operations discussed earlier, the PE supports
both full-precision and binarized operations. However, since
binarized operations are more performance critical, and there is
only few BNN operations that rely on full-precision, we chose
to evaluate the more efficient fixed point for full precision
support in this paper (i.e., instead of floating point).

The MUL unit supports both full-precision fixed point
(FMUL) and binarized multiplication (BMUL) operations. The
datapath to support BMUL is shown in Figure 2(c). It consists
of an xnor unit, as well as a set of look up tables and adders to
perform the specialized population count needed for BMUL.

The PE ADD unit is a full-precision adder, used either to
accumulate the integer BMUL output or full-precision results
from the first-layer computation or batch normalization.

 The AF/I2F unit applies transformations to the accumulated
value prior to writing it to the output RAM buffer. These
transformations include: applying activation function (we use
ReLU in this study) and converting integer to fixed point.

Accelerator Operations. The proposed accelerator
supports all the operations needed to process BNNs. Figure 3
illustrates the sequence of PE operations when processing a
BNN layer. They work as follows.

First, an initialization parameter is loaded to ACC register.
An initialization parameter is the constant offsets to be applied
to output neuron values. In a typical setup where a BNN layer
includes a bias node and utilizes batch normalization at its
output [10], the offset would be b-μ. This parameter can be
adjusted for other BNN variants. For example, if batch

normalization is not used, then this could be set to the bias
parameter b. Further, if bias is not used, this could be set to 0.

Second, the input neuron values to the layer are multiplied
against network weights. For first BNN layer, input neurons
are fixed points. Hence, a PE will multiply-accumulate a single
neuron value with a single weight at a time (i.e., FMUL and
FADD). For other layers (hidden and output layers), the input
neuron values and the weights are binarized (single bit each).
Therefore, the PE can multiply-accumulate a set of packed
weights and neuron values at a time (i.e., BMUL and integer
ADD). In our study, we pack 32 weights and neuron values
together into 32-bit chunks. So, a PE can perform 32 binarized
multiply-accumulate at a time. This improves efficiency and
speeds up computation. E.g., relative to a 32-bit representation
of weights and neurons, this means 32x speedup in multiply-
accumulate computation. The accumulated results are then
written to PE temporary buffers. If this is the first BNN layer,
no data transformation is needed, and AF/I2F unit is set to
simply pass through the result to write out. For other layers, the
accumulated result is integer, and AF/I2F unit is set to convert
it into fixed point (I2F operation).

To produce the final output neurons for the layer, the ACC
is loaded with batch normalization parameter β (figure 3(c)).
Then the accumulated result that was written out to temporary
buffer is read back into the PE. It is then multiplied against the
other batched normalization parameter ϒ and accumulated with
β that was loaded into the ACC earlier. The updated ACC
value is then fed into AF/I2F unit, where activation function
(AF) is applied to produce the final neuron output. The final
output is written back to the PE buffers. (Figure 3(d)).

B. Implementations on FPGA and ASIC
For evaluation, we developed a Verilog RTL

implementation of the BNN accelerator detailed in the previous
sub-section. We used the BNN software from [2] as functional
reference. The RTL is parameterizable to facilitate design
space exploration. For example, a parameter can be set to
output an RTL instance with arbitrary number of PEs, which
we can use to scale up/down various design instances for us to
study. From this parameterized Verilog RTL, we map our
accelerator architecture onto FPGA and ASIC, which we
describe in further detail below.

Fig. 4. FPGA and ASIC accelerators under study. (b) shows ASIC64 design
place and routed on 14nm technology. Each color is a 16-PE tile.

FPGA. FPGA technologies have advanced rapidly. There
are increasing numbers of on-chip RAMs, hard DSPs for
arithmetic operations, and reconfigurable fabric resources in
newer FPGAs. As such, FPGAs have the potential to offer very
efficient BNN accelerator implementations. The compact

binarized weights for interesting problem sizes can fit in many
distributed on-chip FPGA RAMs that deliver abundance of on-
chip bandwidth to the reconfigurable fabric and DSPs to
perform high-throughput computation on packed binarized
neuron and weight values.

This paper targets a high-end Altera Aria 10 FPGA, which
contains ~6MB of on-chip RAMs (i.e., 2713 M20Ks resources)
and 1518 hard DSP units. Note that while Aria 10 is the latest
Altera family available today, the next-generation Stratix 10
family is slated for release soon. Stratix 10 will offer up to ~28
on-chip RAMs, ~5K DSPs, and higher frequency. Thus we
expect dramatic increase in FPGA performance in the near
future when Stratix 10 becomes available.

In our evaluation, we first start by using our parameterized
Verilog RTL to produce a small design instance (e.g., few
PEs). Then, we increase the design parameters to scale up, until
we can no longer fit the design onto the FPGA. This largest
design will be used to represent a high-performance design for
server applications. Additionally, we also study a smaller scale
design for IoT application.

We use Altera Quartus Prime to do our synthesis and
mapping to FPGA. To calculate power estimate for FPGA, we
use Altera’s PowerPlay Early Power Estimator tool [13]. We
check to ensure that we are properly writing the RTL such that
the tool infers the appropriate FPGA resources. E.g., on-chip
PE RAMs are mapped to M20Ks, and the full-precision
multiplier units are mapped to DSPs.

The largest design we can fit our target Aria 10 FPGA
contains 1024 PEs and ~4MB of on-chip RAMs. We also
chose another smaller scale design to study, which contains 64
PEs. The specifications for these designs (FPGA64,
FPGA1024) are shown in Figure 4(a). In FPGA1024, while we
are able to utilize all the DSPs in the Aria 10, we are not able to
use all the on-chip RAMs (M20Ks) due to routing constraints.

In Figure 4(a), we also report peak throughput as terra
operations per second (TOP/sec). This represents 1-bit multiply
and accumulation operations on network weights and neurons.
It is calculated as follows. As an example, the FPGA1024
design contains 1024 PEs and each PE does 32-bit packed
weights calculation in parallel in a pipelined fashion to retire
32 new results each cycle. So, at 150MHz frequency, the peak
throughput is 1024 PEs x (32 bits packed x (1 multiply + 1
accumulate)/PE) x 150M operations per second. This results in
9.8 TOP/sec. Such a high peak throughput is feasible due to the
significant efficiency benefit of binarization.

ASIC. For ASIC evaluation, we study design instances
with 64 and 256 PEs. These designs are synthesized using Intel
14nm ASIC flow, for which the area and power estimates are
obtained. Both designs meet the target frequency of 1 GHz.
Memory elements are modeled using CACTI. The summary of
both implementations are provided in Figure 4(a). Figure 4(b)
shows a place-and-routed 64-PE design (i.e., ASIC64). In the
figure, each of the four tiles in the design is highlighted with a
different color, where each tile contains 16 PEs.

In ASIC64, since the design runs at 1GHz, the 64-PE
design can deliver a peak throughput of 64 PEs x (32 bits
packed x (1 multiply + 1 accumulate)/PE) x 1G operations per

second, which results in 4 TOP/sec. Scaled accordingly, the
256-PE design can deliver a peak throughput of 16 TOP/s. In
both designs, the on-chip RAMs account for a non-trivial
portion of the total chip power and area.

IV. SOFTWARE ON CPU AND GPUS
To evaluate the effectiveness of the proposed hardware

accelerator architecture, we compare the FPGA and ASIC
implementations against a variety of optimized software
implementations on CPU and GPU platforms. For all the
platforms, we evaluate optimized software implementations of
baseline SGEMV for standard neural networks as well as
binarized GEMV for BNNs.

#pragma omp parallel for
for(int i=0;i<n;i+=fBlkI)
for(int j=0;j<m;j+=fBlkJ)
for(int k=0;k<_k;k+=fBlkK) {

for(int jj=0;jj<fBlkJ;jj++)
for(int kk=0;kk<fBlkK;kk++)

bt[jj][kk] = B[(k + kk)*m + j + jj];
for(int ii=0;ii<fBlkI;ii+=fBlkII)
for(int jj=0;jj<fBlkJ;jj+=fBlkJJ)

for(int kk=0;kk<fBlkK;kk+=fBlkKK){
ct_00 = C[(i+ii+0)*m+j+jj+0]; ct_01 = C[(i+ii+0)*m+j+jj+1];
ct_10 = C[(i+ii+1)*m+j+jj+0]; ct_11 = C[(i+ii+1)*m+j+jj+1];
ct_20 = C[(i+ii+2)*m+j+jj+0]; ct_21 = C[(i+ii+2)*m+j+jj+1];
ct_30 = C[(i+ii+3)*m+j+jj+0]; ct_31 = C[(i+ii+3)*m+j+jj+1];
for(int kkk=0;kkk<fBlkKK;kkk++){

b0 = bt[jj+0][kk+kkk]; b1 = bt[jj+1][kk+kkk];
ct_00 += popcnt(A[(i+ii+0)*_k + k+kk+kkk]^b0);
ct_01 += popcnt(A[(i+ii+0)*_k + k+kk+kkk]^b1);
ct_10 += popcnt(A[(i+ii+1)*_k + k+kk+kkk]^b0);
ct_11 += popcnt(A[(i+ii+1)*_k + k+kk+kkk]^b1);
ct_20 += popcnt(A[(i+ii+2)*_k + k+kk+kkk]^b0);
ct_21 += popcnt(A[(i+ii+2)*_k + k+kk+kkk]^b1);
ct_30 += popcnt(A[(i+ii+3)*_k + k+kk+kkk]^b0);
ct_31 += popcnt(A[(i+ii+3)*_k + k+kk+kkk]^b1);

}
C[(i+ii+0)*m+j+jj+0] = ct_00; C[(i+ii+0)*m+j+jj+1] = ct_01;
C[(i+ii+1)*m+j+jj+0] = ct_10; C[(i+ii+1)*m+j+jj+1] = ct_11;
C[(i+ii+2)*m+j+jj+0] = ct_20; C[(i+ii+2)*m+j+jj+1] = ct_21;
C[(i+ii+3)*m+j+jj+0] = ct_30; C[(i+ii+3)*m+j+jj+1] = ct_31;

}
}

Fig. 5. CPU implementation of binarized matrix multiply (C = A x B).

A. Baseline SGEMV/SGEMM on CPU/GPUs
For CPU evaluation, we use a high-performance 2.3 GHz

Intel® Xeon E5-2699v3 server (i.e., Haswell-EP). It has 90
MB of aggregate LLC and 36 physical cores. For baseline
SGEMV, we enabled MKL and OpenMP, ensuring that the
software is taking advantage of multi-threaded execution
across the 36 physical cores. Runtime and power
measurements are done using performance counters.

For GPU evaluation, we use a high-performance Nvidia
Titan X GPU, as well as Nvidia mobile GPU (mGPU) on TX1
embedded development platform. For baseline SGEMV on
GPU, we use cuBLAS libraries. We measure power using
nvidia-smi utility on Nvidia Titan X. Since TX1 did not
provide such facility, we measured power using Kill-A-Watt
power meter. We ran the software in a loop until wall power
measurement stabilized. To get best performance in TX1, we
forced all clocks to run at maximum speed (i.e., ~1 GHz), as

the default clock management scheme provided sub-optimal
performance (i.e., ran at ~70MHz).

B. Binarized GEMV/GEMM on CPU
For binarized GEMV, our Haswell-EP platform has built-in

instructions for population count exposed through the SSE4a
extension to the x86 ISA. These instructions are popcnt for 32-
bit operands and popcntl for 64-bit operands. While included in
the SSE4a set of instruction extensions, they are not SIMD
instructions and only execute on scalar register values. On the
Haswell microarchitecture, a population count instruction can
be initiated every cycle –yielding 64 “binary ops” per cycle. In
contrast, a well-tuned single precision implementation of
matrix multiply using AVX2 FMA instructions can retire at
most 32 flops per cycle, or ½ the throughput of the population
count based binary operation. Therefore, a tuned binary matrix
multiply implementation has a performance roofline of 2x over
a tuned single precision implementation of matrix multiply.

As binary matrix multiply is not included in standard BLAS
packages, we wrote our own implementation (shown in Figure
5). Our implementation uses an outer level of cache blocking
and an inner-level of register blocking in order to achieve
compute-bound performance. The outer block is sized to fit in
the 256 kB L2 cache of our Haswell CPU. In code listing
shown in Figure 5, we explicitly copy and transpose the outer
cache block into the 2d array “bt” in order to achieve better
memory locality and increase the cache hit rate.

The inner block is sized to fit in CPU registers (“ct_xx” in
the code listing). We experimentally determined that a 4x2
register block yields the highest performance on our platform
as larger register block sizes incur spilling while smaller block
sizes do not have enough register reuse. Finally, we use
OpenMP to parallelize across CPU cores.

C. Binarized GEMV/GEMM on GPUs
We evaluate a binary matrix multiply kernel (xnor_gemm)

from BinaryNet [2]. The CUDA implementation uses shared
memory blocking to reduce the number of access to global
memory. For matrix multiplication of C = A x B, each thread
block loads sub-matrices of A and B from global memory into
shared memory. Then, each thread in thread blocks computes
one element of the sub-matrix C using xnor and __popc()
operations. The evaluated xnor_gemm kernel is similar to the
blocked version of matrix multiply in the CUDA Programming
Guide except for the code for computing the product C.

The population count operation is natively supported in
Nvidia GPU devices via __popc() (for 32-bit operands) and
__popcll() (for 64-bit operands) intrinsic functions. These are
directly used in the CUDA kernel, and the CUDA compiler
maps __popc() to a single instruction and __popcll() to a few
instructions.

On our evaluated GTX Titan X platform, 32 32-bit
population count operations can be issued every cycle per
Streaming Multiprocessor (SM) – yielding 1024 “binary ops”
per cycle. As GTX Titan X can issue up to 128 32-bit floating-
point operations every cycle per SM, the performance roofline
of “binary ops” over FP32 operations is 4x.

V. EVALUATION
We studied a set of neural network layer configurations that

are used by popular networks, such as AlexNet [8], VGG [11],
and Neural Talk (NT) [12]. See Table I. We focus on the fully
connected layer, which contains most of the weights in the
network and are the most challenging due to the large model
size. As stated in the introduction, larger models in fully-
connected layers are challenging to execute efficiently since
they do not fit on-chip, necessitating off-chip DRAM accesses
that are very energy inefficient and imposes performance limit
on the DRAM bandwidth available to access these models.

TABLE I. NEURAL NETWORK LAYER CONFIGURATIONS UNDER STUDY.

Name Outputs Inputs Binarized model size (MB)

Alex/VGG 7 4096 4096 2.00
Alex/VGG 8 1000 4096 0.49

NT-We 600 4096 0.29
NT-Wd 8791 600 0.63

NTLSTM 2400 1201 0.34

For FPGA, we only evaluate layers that can fit on the
~4MB RAMs that our FPGA design could use. We evaluate

performance and performance/watt. For the high-performance
platforms (Xeon CPU, Titan X GPU), we also evaluate batched
execution with batch size of 10, as suggested in [3]. For non-
binarized software evaluation, the batched experiments called
CPU or GPU SGEMM kernels, while the non-batched
experiments called SGEMV kernels.

The evaluation results are shown in Figure 6, 7, and 8.
Figure 6 and 7 show performance and performance/watt,
relative to non-batched baseline CPU software. Figure 8
depicts the fraction of peak performance that is achievable,
indicating platform utilization. E.g., 50% means only half of
the peak performance available in the platform was achievable
during our experiments.

A. CPU versus GPU
In a normal (no batching) mode, CPU performs comparably

well to GPU, as show in Figure 6. On average, non-batched
CPU has ~90% better performance than non-batched GPU.
Among the five network layer configurations, GPU performs
almost comparable to CPU only for Alex/VGG 7 where the
number of outputs is equal to number of inputs (i.e., the weight
matrix is square). In other cases, GPU is always noticeably
inferior to CPU.

Even though GPU has much higher peak performance, it is

Fig. 8. Achieved performance relative to peak. E.g., 50% means only half of peak performance is realized.

Fig. 6. Performance relative to baseline software on CPU. I.e., above 1 means speedup, while less than 1 means slowdown.

Fig. 7. Performance/Watt relative to baseline software on CPU.

extremely underutilized (i.e., ~1% utilization on average, as
shown in Figure 8). The CPU is also underutilized (~6%), but
not as much as the case with GPU. The low utilization is due to
the challenge in being able to extract fine-grained parallelism
out of the weight matrices. Without batching, there is only a
single set of inputs (i.e., a vector) that is being multiplied
against the weight matrix. Thus, there is limited data re-use.
Unless the platform can extract sufficient fine-grained
parallelism from this single matrix x vector operation to utilize
the available platform resources, it is inevitable that the
platform would suffer from underutilization.

For CPU and GPU, when scaling up to multiple software
threads, if there is only a small amount of data to process, the
overhead of threading can end up being the dominant one.

For the mobile GPU, as Figure 6 shows, its performance is
much worse than a server CPU (i.e., ~40x worse on average).
The mobile GPU also suffer from extreme underutilization
(~1% on average, as shown in Figure 8), as in the case with
high-performance GPU. However, the mobile GPU has much
lower peak performance.

Consequently, CPU achieved a better overall
performance/watt than both the high-performance GPU as well
as mobile GPU, as depicted in Figure 7. As such, for non-
batched neural networks, CPUs can be a better overall solution
than GPU, delivering comparable performance while achieving
better energy efficiency.

B. Impact of Batching Multiple Inputs/Outputs
Batching improves performance as well as utilization for

both CPU and GPUs. This is because batching enables more
data reuse, since there are multiple input vectors (forming an
input matrix) to be multiplied against the weight matrix.

As shown in Figure 6, batching improves performance by
~80% for CPU and ~5.8x for GPU. Accordingly,
performance/watt improves by similar degree, as shown in
Figure 7.

Batching improves CPU utilization by almost 2x (from 6%
to 10%) and GPU by 7x (from 1% to 7%). Even though
batching leads to noticeable improvements in utilization, at10%
utilization for CPU and 7% for GPU, in overall these platforms
are still underutilized.

Furthermore, as explained in Section 2, batching increases
latency. So, if possible, a solution that improves performance
without necessitating batched operations would be preferable.

C. Impacts of Binarization
Binarization provides the potential to deliver significant

performance improvements, since it reduces the storage
requirements as well as computational demands. For CPU and
GPU, smaller datasets means that they are more cacheable and
can be kept on-chip. Further, binarized GEMV operation
requires less computation than SGEMV, as discussed earlier.

Indeed, our results in Figure 6 show that binarized CPU
software has 5x better performance than baseline CPU. For
GPU, binarization improves performance by ~11x.
Binarization leads to larger speedups than batching. For

example, while batching delivers 80% performance boost for
CPU, binarization offers 5x improvements, which is 6x better
than batching. GPU has similar trend as well. Moreover,
binarized operations can be batched as well. Further speedups
can be achieved by combining both batching and binarization.

Hence, one can choose to do binarization only, which
delivers improvements better than batching, while meeting low
latency requirements. Or, one can combine binarization with
batching to achieve better throughput, if latency constraints are
not as stringent.

Accordingly, as shown in Figure 7 and 8, binarization leads
to improvements in performance/watt as well as utilizations.

D. Hardware Accceleration
Beyond software optimizations, both FPGA and ASIC

accelerators can deliver even further improvements in
performance and performance/watt. As shown in Figure 6, our
FPGA and ASIC accelerators deliver one to two orders of
magnitude speedups over the baseline CPU. The high-
performance FPGA1024 design delivers almost 50x
performance improvement over the baseline CPU.

These large performance speedups from accelerators are
due to the custom hardware design for BNN, which consists of
PEs that are well integrated with distributed on-chip RAMs to
deliver neural network parameters to the PEs at a sufficiently
high bandwidth to keep the PEs well utilized. The PE is also
equipped with native support for binarized operations.

Indeed, as shown in Figure 8, our accelerators achieve
significantly higher utilizations (i.e., ~75%) than the software
implementations on CPU and GPU. As such, even though our
accelerators have lower peak performance than the high-
performance GPU, they are able to utilize most of it, resulting
in significant performance improvements over GPU.

As depicted in Figure 7, energy efficiency improvements
achieved by the accelerators are even better. The ASIC
implementations offer four orders of magnitudes in
improvements over CPU baseline, while the FPGA offers three
orders of magnitude.

E. FPGA versus ASIC
The general rule of thumb is that FPGA will be about an

order of magnitude less efficient than ASIC. However, modern
FPGAs contain “hardened” resources, such as DSPs for
arithmetic operations and M20Ks (in Altera FPGA) for on-chip
RAMs. When an FPGA design is implemented such that it uses
these hard blocks, the efficiency gap between FPGA and ASIC
can be reduced. This is the case for our BNN accelerators,
which heavily use M20Ks on-chip RAMs and DSPs for
arithmetic operations.

Both FPGA64 and ASIC64 designs adopts the same
microarchitecture (i.e., number of PEs and RAMs), hence they
provide a direct comparison between FPGA and ASIC.
Between these two designs, ASIC64 has ~4.5x higher
performance than FPGA64 since it has higher frequency.

In terms of energy efficiency (i.e., performance/watt),
ASIC64 is ~11x better than FPGA64. However, Aria 10 FPGA

is fabricated on a 20nm TSMC process technology, while the
ASIC is on 14 nm Intel technology. Normalizing for such
process technology difference, the FPGA/ASIC efficiency gap
in this case is estimated to be less than ~8x, which is lower
than the abovementioned rule of thumb. However, we think the
less than ~8x ASIC/FPGA gap is due to the fact that our BNN
accelerator heavily take advantage of the hard FPGA blocks
(M20K for on-chip RAMs, hard DSPs for multiply/add).

For the larger scale high-performance designs (FPGA1024,
ASIC256), the large Aria 10 FPGA allowed us to implement
1024-PE design, but at a lower frequency than ASIC (150MHz
vs. 1GHz). Thus, while FPGA has more PEs, it runs slower,
resulting in worse performance than the ASIC256 design.

F. Opportunities for FPGAs
The upcoming Altera Stratix 10 FPGA will offer even more

M20Ks and DSP hard blocks. Therefore, we can expect to
deploy designs with even more number of PEs in the Stratix 10
when it becomes available.

Furthermore, Stratix 10 has the new HyperFlex technology
to deliver higher operating frequency through retiming. Since
our BNN accelerator does not have tight data dependencies and
is amenable to re-timing, we expect that our accelerator can
take advantage of Stratix 10 support for higher frequency.

The aforesaid trends highlight the tremendous opportunities
for FPGAs. Unlike with fixed ASIC design, FPGAs can be
reconfigured for other uses as well as newer improved versions
of an accelerator. Thus, if the FPGA-to-ASIC efficiency gap
narrows, there is a stronger case to adopt FPGA solutions.

VI. RELATED WORK
To the best of our knowledge, we are the first to propose

hardware accelerator for BNNs. The original BNN paper [1]
focused on the BNN algorithm. It describes the benefits of
BNNs through algorithmic complexity analysis. A more recent
BNN work (BinaryNet [2]) shows an evaluation of binarized
GEMM on GPU using xnor and population count. In contrast,
this paper proposes hardware accelerator architecture for
BNNs, and offers comprehensive comparative evaluation
across various interesting problem sizes, on FPGA, ASIC,
server CPU, server GPU, and mobile GPU.

Aside from BNNs, there are myriad of existing accelerators
for Deep Learning (DL), targeting both FPGAs (e.g., [6]) as
well as ASICs (e.g., [7]). However, none of them target BNNs.
BNNs are unique, since they represent each network weight
using a single bit, which requires a proper acceleration strategy
to take full advantage of such bit-level representations. There
are also existing studies on machine learning accelerators (e.g.,
[14][15]), which unlike this work, target non-DL algorithms.

Multiplication of a dense matrix against a dense vector
(GEMV) is a well-known construct that is part of the standard
BLAS library. There are existing studies (e.g., [4]) that
evaluate BLAS on CPUs, GPUs, and FPGAs. Unlike prior
work, this paper focuses on a binarized GEMV. Moreover, this
work offers comparison with an ASIC, while others only
consider CPU, GPU, and/or FPGA. And, this paper targets
more modern platforms. Finally, a recent study [16] evaluates

neural network (NN) implementations on CPU, GPU, FPGA,
and ASIC. However, it focuses on recurrent NNs, not BNNs.

VII. CONCLUSION
Binarized neural networks offer significant algorithmic

efficiency improvements over standard full-precision networks.
This paper proposed hardware accelerator architecture for
BNNs, which delivers superior performance while consuming
energy efficiently. We evaluated our accelerator to target Aria
10 FPGA and 14nm ASIC. We compared these accelerator
instances against optimized software on a high-performance
multi-core CPU and GPU for cloud server, as well as a mobile
GPU suitable for IoT. Our evaluation results show that the
proposed accelerator can deliver orders of magnitude
improvements in performance and performance/watt over well-
optimized software on CPU and GPU. Lastly, while FPGA is
less efficient than ASIC, the FPGA-ASIC gap may be reduced
for designs that heavily utilize hard blocks (DSP, M20K), such
as our BNN accelerator. Hence, FPGA offers an attractive
solution, which deliver superior efficiency improvements over
software, without having to lock into a fixed ASIC solution.

REFERENCES
[1] M. Courbariaux, Y. Bengio, J-P. David, "BinaryConnect: Training Deep

Neural Networks with binary weights during propagations," Neural
Information Processing Systems (NIPS), 2015.

[2] M. Courbariaux, I. Hubara, D. Soudry, et al., "Binarized Neural
Networks: Training Deep Neural Networks with Weights and
Activations Constrained to +1 or -1," arXiv:1602.02830 [cs.LG].

[3] D. Amodei, R. Anubhai, E. Battenberg, "Deep Speech 2: End-to-End
Speech Recognition in English and Mandarin," arXiv:1512.02595
[cs.CL].

[4] S. Kestur, J. D. Davis, O. Williams, "BLAS Comparison on FPGA, CPU
and GPU," ISVLSI, 2010.

[5] D. Mukonoki, T. Imamura, D. Takahashi, "Fast implementation of
General Matrix-Vector Multiplication (GEMV) on Kepler GPUs,"
Euromicro International Conference on Parallel, Distributed, and
Network-based Processing, 2015.

[6] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. "Cnp: An fpga-based
processor for convolutional networks," In Field Programmable Logic
and Applications (FPL), 2009.

[7] T. Chen, Z. Du, N. Sun, et. al, "Diannao: A small-footprint high-
throughput accelerator for ubiquitous machine-learning," Architectural
Support for Programming Languages and Operating Systems, 2014.

[8] A. Krizhevsky, et al., "Imagenet classificationwith deep convolutional
neural networks," NIPS, 2012.

[9] M. Horowitz. Energy table for 45nm process, Stanford VLSI wiki.
[10] S. Ioffe, C. Szegedy "Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift," arXiv:1502.03167
[cs.LG].

[11] K. Simonyan and A. Zisserman, "Very deep convolutional networks for
large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.

[12] A. Karpathy and L. Fei-Fei, "Deep visual-semantic alignments for
generating image descriptions," arXiv preprint arXiv:1412.2306, 2014.

[13] Altera's PowerPlay Early Power Estimators (EPE) and Power Analyzer.
URL: https://www.altera.com/support/support-resources/operation-and-
testing/power/pow-powerplay.tablet.html

[14] E. Nurvitadhi, A. Mishra, D. Marr “A sparse matrix vector multiply
accelerator for support vector machine,” CASES, 2015.

[15] E. Nurvitadhi, A. Mishra, Y. Wang, G. Venkatesh, D. Marr, “Hardware
accelerator for analytics of sparse data,” DATE, 2016.

[16] E. Nurvitadhi, et al, “Accelerating recurrent neural networks in analytics
servers: Comparison of FPGA, CPU, GPU, and ASIC,” FPL, 2016.

